An Adaptive Particle Swarm Optimization Method for Solving the Grasp Planning Problem
نویسندگان
چکیده
This paper proposes an adaptive particle swarm optimization (APSO) approach to solve the grasp planning problem. Each particle represents a configuration set describing the posture of the robotic hand. The aim of this algorithm is to search for the optimum configuration that satisfies a good stability. The approach uses a Guided Random Generation (GRG) to guide the particles in the generating process. A shape-based object “parameter factor” is generated from the GRG process so that, it can be considered in the fitness function. According to the number of contacts between the fingertips and the object, the algorithm can take off the inactive particles. The kinematic of the modeled hand is described and incorporated in the fitness function in order to compute the contact positions. The APSO is tested in the HandGrasp simulator with four different objects and the experimental results demonstrate that this approach outperforms the compared simple PSO in terms of solution accuracy, convergence speed and algorithm reliability. © 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Centre of Humanoid Robots and Bio-Sensor (HuRoBs), Faculty of Mechanical Engineering, Universiti Teknologi MARA.
منابع مشابه
Improved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملSolving Economic Dispatch in Competitive Power Market Using Improved Particle Swarm Optimization Algorithm
Generally the generation units in the traditional structure of the electricity industry try to minimize their costs. However, in a deregulated environment, generation units are looking to maximize their profits in a competitive power market. Optimum generation planning in such structure is urgent. This paper presents a new method of solving economic dispatch in the competitive electricity marke...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کامل